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Abstract 

A model containing a nonet of scalar mesons S, a nonet of pseudosealar mesons P, 
and a nonet of baryons is constructed where the mesons enter in the form of the matrix 
M = e ~s+w). Several Lagrangians are introduced such that the mesons get their physical 
masses, and the decay widths of the scalar mesons are calculated. The model satisfies 
generalized PCAC. It is found that the coupling constants of the mesons e(700) and 
g(1060) to pions and nucleons satisfy the relations: 

laoN,,I 1.4, IG~,,,~,I 0 .89 ,  [G~=G~ and [G,,~,G~,Nn] 0.34. 
16~..I Ic.,~.l 4n 4n 

1. Introduction 

The algebraic formulation of chiral SU(3)L | SU(3)R symmetry known 
as current algebra (Gell-Mann, 1962), has offered much in the theory of  
elementary particles. I t  was found later that the results of  current algebra 
can be obtained also f rom effective Lagrangians (Weinberg, 1967), and 
for this reason they were used extensively in the last few years (Gasiorowicz 
& Geffen, 1969). The fields which are encountered often in phenomeno- 
logical Lagrangians are a honer of  pseudoscalar fields, a nonet of  scalar 
fields and a nonet of  baryon fields. In this paper  we construct a model 
containing these nonets. 

In Section 2 we assume that the mesons enter in the form of  a matrix 
M which is a function of a combination of the scalar and pseudoscalar 
meson fields, and which transforms as the (3z,3R*) representation of  
SU(3)L | SU(3)R. From this matrix the kinetic energy Lagrangian is 
constructed, and also several mass Lagrangians. Symmetry breaking is 
introduced through the matrix 28. All scalar and pseudoscalar meson 
fields can get arbitrary masses. The mixing angle of  the I =  0 members 
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of the pseudoscalar nonet is determined in terms of the masses of this 
nonet, and the same thing happens for the scalar nonet. The model satisfies 
generalized PCAC (partially conserved axial vector current). The terms of 
the expansion of our Lagrangians which have three or more fields are 
taken as interaction Lagrangian terms. The interaction Lagrangian con- 
taining a scalar field and two pseudoscalar fields is calculated. 

In Section 3 the decay widths F(e ~ ~wc), F(6--~ zc~), F(s'--~/?K), 
F(K' ~ K~) and F(~/' ~ r/+ 2~) are estimated. Also the S-wave nn, rcK 
and KK scattering lengths are calculated. Most scattering lengths are very 
dose to those given by the usual effective Lagrangian approach (Cronin, 
1967), i.e. the contribution of the scalar meson exchange is small. The 
decays of scalar mesons and the ~ scattering lengths have also been 
calculated on the basis of a linear realization of chiral SW(3) which is 
broken spontaneously (Schechter & Ueda, 1971 ; Suzuki et al., 1971). 

In Section 4 a nonet of baryons is introduced into the model. Several 
Lagrangians are added such that the baryons get their physical masses, 
and the coupling constants of the mesons e(700) and e'(1060) are calculated. 
The product of the coupling constants of ~ to nucleons and pions agrees 
with rough experimental estimates (Engels, 1970; Peterson & Pi~ut, 1972; 
Ebel et al., t971), and the ratio of these constants is close to the value 
found from the coupling of e to the trace of the energy-momentum tensor 
(Genz & Steiner, 1971a). Also the product of the coupling constants of e' 
to nudeons and pions and the ratio of these constants are close to the 
corresponding values found from the coupling of s' to the trace of the 
energy-momentum tensor (Genz & Steiner, 1971b). 

The meson matrix is a Lorentz scalar of conformal weight -1. This 
allows the introduction of the conformal symmetry in an easy way. 

2. Meson Lagrangians 

Let S and P be two 3 x 3 matrices representing a nonet of scalar mesons 
and a nonet of pseudoscalar mesons respectively, and let us consider the 
combination 

�9 = S + i P  (2.1) 

We assume that the above mesons enter only in the form of the matrix M, 
where 

M = e s~ (2.2) 

ff we omit the scalar fields the above matrix M reduces to the pseudoscalar 
meson matrix used in phenomenological chiral symmetry models (Cronin, 
1967). M is taken to transform as follows under the chiral group 
SU(3)L | SV(3 h 

M," ~ (3,, 3~*) (2.3) 
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Then the Lagrangian 

1 
LKr. = -- ~ Tr (0~ M 0~ M +) (2.4) 

is invariant under the group SU(3)L | SU(3)R. 
The transformations x u --> x u' of the conformal group satisfy the rela- 

tions (Isham et aL, 1970) 

0 "O ' 1 Ox" x. x~ g.V g~  (2.5) 
~-~x~ O-~x~ = det (Ox) 1/2 

If the fields ~b(x) belong to a linear representation of the inhomogeneous 
Lorentz group 

O'(x') = D(A) O(x) (2.6) 

then the conformal transformations are represented by (Isham et aL, 1970) 

•'(x') = det D[A(x)] ~(x) (2.7) 
i kUxx/I 

where the matrix A(x) is given by 

I . /ax'~ -214 0x,, (2.8) 
A.~(x) = det ~ x  ) 0x ~ 

The number l, is the conformal weight of the field $(x). 
In order to construct conformal invariant theories one introduces a 

Lorentz scalar field a(x) with the anomalous transformation law (Isham 
et aL, 1970) 

a'(x') = a ( x ) -  @ In det (~--~') ] (2.9) 

where f is a constant. 
We assume that the fields of the nine pseudoscalar mesons, and the eight 

scalar mesons which belong to the SU(3) octet, transform under conformal 
transformations as the ~,(x) of equations (2.7) with 

tp = ts  = 0 ( 2 . 1 0 )  

while the SU(3) singlet scalar field transforms as the a(x) of equation (2.9)~ 
This means that under conformal transformations we get 

(Ox') -~/* 
M --> M'  --- det Ox M (2.11) 

The above equation implies that the action of the Lagrangian L~E of 
equation (2.4) is invariant under conformal transformations. 

The weights of equation (2.10) differ from the canonical weights 
1p = ls = - 1 .  This leaves no problems since in a theory which contains 
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the field a(x) the conformal weight of a field has no invariant significance. 
The Lagrangian LKn gives to lowest order in f the kinetic energy part of 
the free Lagrangian of the nonet of scalar and the nonet of pseudoscalar 
mesons 

LKE = --�89 Tr (0u S 0u S + au P a, P) - f  Tr [S(au S a~ S + 0, P 0~ P)] 
f 2  + ~-~Tr (4a, P auP 3 - 30uP 2 auP 2) + . . .  (2.12) 

The higher order terms in the above expansion represent derivative type 
interaction terms. To complete the free Lagrangian mass terms must be 
added. Consider the Lagrangians 

L1 = ~ Tr [(MM + MM + + M + MM + M)(cq + fll 28)1 = 1  Trt[1 + 4 f S  
" = d  o r  

+ 8f2 S 2 + ~ f 3  S a +..-](~l + fix 28) + ~Ua(2PSP 
- [S, p2]+) fl128] + O(f  2) (2.13) 

L2=-~fTTr(iVIM+)Tr[(MM++M+M)(~2+ fiE 28)] =~5 [9a2 + 6 f T r  [S 

. (2c,2 + f12 2s)] + 6 f  2 Tr [$2(2~2 + fl2s)] + 4a2 f2  Tr S Tr S 
+ 4flzf 2 Tr S.Tr (S2s) + 8~2f 3 Tr S 3 + f lzf  a Tr [4S 3 + 2PSP 
- [S, P 2]+] 28 + 8a2 fa  Tr S Tr S 2 + 4fl2 fa  [Wr S Tr (S 2 28) 
+ Tr ($28) Tr $2]] + O( f  2) (2.14) 

L3= Tr[(MM++M+M)(e3+fls2s)]=T2Tr[(1 + 2 f S + 2 f 2 S  2 

f~ 4 3 3 + -~f S + . . . )  (Ca + fla 28) + ~ (2PSP - [S, p2]+) fla 2s] 

+ O(f  2) (2.15) 

La= ~__~Tr[(M + M+)(a, + fi42s) ] ~1 f2_2 = ~ T r [ [ 1  + f S  + (S 2-P2)  

f a  f ,  + ~ (S a - PSP - [S, P/]+) + ~_~p4 + . . . l  (e, + fl, 28)] (2.16) 

f l ,  ~5 
L5 xT~Tr ( M -  M +) Tr ( M -  M + ) + ~-~ Tr ( M -  M + ) Tr [ ( M -  M +) 28] 

" d  

= - e s [ T r P T r P  + 2fTrPTr(SP)  - TrPTrP  a + . . . ]  - fls[TrP 

.TrP2s + fTr(P2s)Tr(SP) + f  TrPTr([S,P]+2s) f~ - ~ Tr (P2s)  

f 2  
.TrP 3 - - g  T rPTrP  3 2s + . . . ]  (2.17) 

We take 
5 

Ltotai=LKE + ~ Lt (2.18) 
i=1 
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The Lagrangians L1 and L2 have conformal weights -4 .  The conformal 
weights of  the other Lagrangians La,/;4 and L5 are -2 ,  -1 ,  and - 2  respec- 
tively. For fll = f12 = fla = 0 the Lagrangians L1, L2 and La are invariant 
under the group SU(3)t. | SU(3)R. The terms proportional to ill, f12 and 
fla are invariant only under SU(2)L | SU(2)R transformations. The braking 
of the S U ( 3 ) z  | SU(3)~ symmetry has been introduced through the 
matrix 2s. The L4 breaks the chiral symmetry. The reason for the intro- 
duction of this term is that we want the model to satisfy generalised 
PCAC. The L5 also breaks chiral symmetry. 

To order f o  our Lagrangian is required to be the free Lagrangian of 
a nonet of  scalar mesons and a nonet of pseudoscalar mesons all of  which 
have their physical masses. The coefficients ag and fl~, i = 1 . . . . .  5, are 
determined in such a way that the mesons of the model get their physical 
masses and in addition the coefficients of the terms T r S  and TrS2s  vanish. 
The constant term appearing in equation (2.18) is eliminated by the addition 
of a c-number term. The I = 0 member of the SU(3) octet and the SU(3) 
singlet which is a member of the nonet are mixed. We define the mixing 
angles by the relations 

So = e sin O, + e' cos O, 
Ss = ecos Os - 8' sin O, (2.19) 

Po = ~ sin Op + ~/' cos Op 
P8 = ~/cos Op - ~/' sin Op (2.20) 

The ~/' is identified with the ~((958). 
Let 3, K',  K',  8 and e' be the members of the nonet of  scalar mesons, 

where 3 has I = 1, K" and/~ '  have I = 1 and e and 8' have I = 0. Then the 
above requirements imply 

cq = ~[(m~ 2 + 2ink 2) - (rn~ z + 2m~,)] 
_ _  1 2 c~2 - v~(m~ + 2m~,) - ~ ( m  2, cos 20~ + rn~ 2 sin 20, )  

~3 = 4-1-[ m2, COS20s + m ~  2 S in20s  - -  (m~ 2 + 2mr2)] 

~, = �89 2 + 2mK 2) 

~5 = -1~[3(m 2" cos 20p + m, 2 sin 20p) -- (m~ 2 + 2mK2)] 

= & [(m~ 2 -- m~ 2) -- (m~ 2 -- ml, )]  

1 
f12 = 2 ~  [3(m2' -- rn~2) sin 20 ,  + 4~/(2) (ran 2 -- m2,)] 

f13 = ~ 6  [3(m2" -- rn~2) s in20 ,  + 12a/(2) (m~ 2 -- rnr2)] 

fl* = ~ 3  (m'2 - mr2) 

1 
fls 6,V/6 [3(m~ z, - m. a) sin 20p + 4X/(2) (m= z - mK2)] (2.21) 
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The absence of terms of the form Tr(S2s)Tr(S28) and Tr(P2s)Tr(P2s) 
imply that the mixing angles are given by the relations 

sin2 iO s = �89 -- mo 2) -- m, 2 2 (2.22) 
m e, - -  m n  2 

sin z Oe = k ( 4 m K 2  - -  m ~ 2 )  - -  mn2 2 (2.23) 
m n, - rn,~ 2 

i.e. they are not free parameters in this formalism. 
Considering the transformation 

M -+ e ~,~, M e  l~,z, 

and applying the method of Gell-Mann and L6vy (1960) we can 
calculate the axial vector current J~, and its divergence. We find 

0 . ~  ` /2 2 ,, u J ~  = -~-m~ r + (higher order terms) (2.24) 

where 
m~ = m~ for ~ = 1, 2, 3 

= mK for e = 4, 5, 6, 7 (2.25) 

Therefore the model satisfies generalized PCAC. 
We are interested in calculating the decay widths of the scalar mesons 

into two pseudoscalar mesons. The Lagrangian L(SPP) contributes to 
such processes. From equations (2.18) and (2.21) we get: 

L(SPP) = - f T r  (S 0 K P 0~ P) - f T r  (PSP [~(m~ 2 + 2mK 2) 
1 

+ ~ j  [(m~ 2 - mr 2) + 3Z(mo 2 - mE,)] 28]) - - / T r  ([S, p2]+ 

x [@(m~ 2 + 2mr 2) -- 3~/3 (mn2 -- m~,) 28]) 

` / 7 )  f[3(m, z ' ' -  cos 2 lOv + m. 2 s in2 lOv) 

- (m~ 2 + 2mK2)] Po Tr (SP) + 6 - ~  [3(m~, - m, 2) sin 2lO v 

+ 4`/(2) (m~ 2 - mr2)] [`/(2) P8 Tr (SP) + ~ - P o  Tr ([S, P]+ 28)] 

(2.26) 

Explicitly we find for the derivatives containing Lagrangian 

 L(see)o=-! a.K- e" 
~_33(sinlO cosO~\ 1 /  + ~ )  e O,, n. O~,n- --ff3 [cos lO~ sinlO~]~_.] 

2 cos lOv] •  3(sinO, + 
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2 ( sin Or~ a 
a /3 , c~  --~-] .O,~Ourl" 

~ ( 2 s i n O ~  c~ - - 

~33 (2cos sinOs, , Os + - - ~ ) e  O~,-~OuK 

cos Or\  -.  
1 (2s inOr  - ~  )(K O~,K+o~,eK')O~,r 1 

~33( _ sinOr\ -, 2cosOr +--~-2-)(K O~,K + O,,RK')O~,JT' 

SoO. o O ,o- s80.,o".P8 

~ ( S o - ~ 2 )  O~PsOuP 8 (2.27) 

where K =  KO and for simplicity the last three terms of the above 

Lagrangian have not been expressed in terms of the physical fields 8, d, 
q and t(. 

The non-derivative part of the Lagrangian L(SPP) is given by 

L(SPP)N-D = - ~  [m,~ 2 - 2mK ~ + ~(m~ z -- m~,)] 6./s 

1 [3m, Z + 2(m~ 2 _ m~,)]~. (/~' ~K + / ~ K ' )  
6 ~ 2  

2~/3 sin O~ + ~ 2  ] ~ r~. ~ - ~ cos Os ~-~-] 

~ cos Or\  
d ~ .~ - 6.,/6 [6V~(2) m'~2 sin Or + x 

+ [6~/(2) (m~. cos 2 Or + m, z sin e Or) - 3(m, 2, - m, ~) 
• s in20r  + 2.v/(2) (m~ 2 - m~:2)]sin Or 
- 1/(2) [3(m~. - m, 2) sin 2 0 r  + 4~(2) (m,~ 2 - inK2)] 

sin Or 

+ [6~/(2) (m~, cos Or 2 + m, ~ sin 2 Or) 
~ 3(m~, - m, z) sin Oe + 2~(2) (m~ 2 - inK2)] COS Or 
+ ~(2)  [3(m~, -- m~ 2) sin 2Or 
+ 4~(2) (m~ 2 -- m~2)] sin Op] 6. n~' 

1 
2X/6 [2~v/(2) inK2 sin Os -- [3m,, 2 -- 2mK 2 

+ 4(m~ 2 -- m2,)] cos Os] I~Ke - 2 - ~  [2"V/(2) mK2 cos O 
- -  y 

+ [3m,~ 2 -- 2ink 2 + 4(m~ 2 -- m2,)] sin O,]/(Ke" 
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1 
12x/6 [314~/(2) (m.L cos 20p  + m. z sin e Op) 

+ (mnL - re,if) sin 20~.] sin Oe + 2[ran 2 - 4ink 2 
+ 6(mn 2 - rn~,) - 3~(2)  (m~. - m. 2) sin Op] cos O~.] 

1 
• (K'  K +  KK' )  rl - 1 - ~  [3 [4.x/(2) (m 2, cos 2 tg~. 

+ mn 2 sin 20e)  + (m~, - m, 2) sin2Op] cos O~, -- 2[m~ z 
- 4rnK 2 + 6(rn~ 2 -- m~,) - 3 V'(2) (rnZ~, - rnn 2) sin 2Oe] 

sin Oe] (K'  K + KK' )  ~1' - -6 -~  [[6(m~, cos 2 • Op 

+ m,, z sin 20~) - (rn~ 2 + 2mr2)] So - [3(m~, - m, 2) 
• sin 2Op + 2~/(2) (m~ 2 - mr2)] $8] Po Po 

1 
+ ~ [V'(2) (m= 2-  4mt~ 2) So + [3 V'(2) (m 2, - m,2)] 

+_1_1 
• sinZOe + 3m,~ z] Sa]PsP8 6V'6 [[6X/(2) (m 2, - m n  2) 

• sin2Oe + 8(m~ 2 - mK2)] S O 
- [6~/(2) (mnL cos 2 O1. + m, 2 sin 20p) 
+ 3(rn~, - m, 2) sin 2OF] $8] Po P8 (2.28) 

The Lagrangian L ( S P P )  of equation (2.26) is the sum of  the Lagrangians 
L(SPP)o  and L(SPP)n_D of equations (2.27) and (2.28). 

3. Decay Widths o f  Scalar Mesons and Meson-Meson Scattering 
Lengths 

From the Lagrangians (2.27) and (2.28) the decay widths of  the scalar 
mesons into two pseudoscalar mesons can be calculated. We shall be 
interested in the decays ~ -+ nrc, ~' -+ nn, 6 -+ nl 7, ~' ~ KK, and K" --)- Kn. 
We find 

cos 0 ~  : (m~ 2 - m,~2) z (m~ 2 - 4m,~2) ~/2 
F(e -+ nn) = f z  sinOs + - - - ~ ]  ~-2~-me 2 (3.1) 

sin Os] 2 (m~, - m,~2) 2 (m 2, - 4m,,2) 1/2 
F(e' -+ nn) = f 2  (cos O~ ~-~ } , 32----~m~; (3.2) 

F(6 -+ n~) - 48~m3 (m~ 2 - m~ 2) sin Oe + - ~  ] + [m~, cos 2 0 e  

2 1 2 + mn 2 sin 20p  - m~ - ~ sin Oe cos Oe(m~, - tuna)] 

x sin Op - [sin Oe cos Op(m~, - m n  a) 
+2~/2 ] 2 

- - ~  (m~ 2 - rn~2)] cos Oe ([me 2 - (m, + m~) 2] 

x [mn 2 - (m. - m,02]) x/z (3.3) 
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- f 2  
F(e" -~ K K )  = 192~zrn~, [2V'(2) (m~, - m r  2) cos Os + [m 2, - 4rex 2 + 3rn~ 2 

+ 4(m~ 2 - m2,)] sin 0~] 2 m 2 - ( ~ .  4mr2) 1/2 (3.4) 

f 2 ( m 2 ,  + 2m~ 2 -- 3mr2) 2 
F ( K '  -+ KTr) = 3847zma, 

• ([rn 2, - (mr + rn~) 2] [m~, - (mK - m~)2]) 1/2 (3.5) 

The parameter f enters in the axial vector current. I f  we omit the S 
fields the kinetic energy term (2.4), from which the axial vector current is 
calculated, is identical to the kinetic energy term of Cronin (1967). The 
value of  f found in this paper from the leptonic decays of pseudoscalar 
mesons is 

f =  2m~ x (3.6) 

We shall assume that f has this value. 
Several papers (Particle Data Group, 1971) have indicated the existence 

of  an isosinglet scalar meson with mass around 700 MeV, which decays 
into two pions, and its width is much larger than 100 MeV. The following 
values of  the mass and the width are suggested (Ebel et al., 1971) 

ms = 700 • 200 MeV, /'8 = 500 q- 300 MeV (3.7) 

We shall assume that our 8 meson has mass 700 MeV. Our second isosinglet 
scalar meson e' will be identified (Particle Data Group, 1971) with the 
~/o+(1070) (or S*). The total width of this resonance which decays to ~zn 
(partial fraction less than 65) and t o / ( K  (partial fraction more than 35) is 

F~, = 150-300 MeV 0.8)  

The isotriplet scalar meson 6 will be identified (Particle Data Group, 1971) 
with the 7~N(975), whose decay width is 58 • 11 MeV. The I =  �89 scalar 
mesons are controversial. Analysis of the K~s form factors indicates a 
K~ resonance around 1 GeV (Pati & Sebastian, 1968). 

To calculate the widths we must know the mixing angle O~. If  the mass 
mx,  is known the angle O~ can be calculated from equation (2.22). Also 
if the widths F(e -+ zn) or F(e" -+ 7rn) are known experimentally the angle 
Os can be calculated from equations (3.1) or (3.2) respectively. But this is 
not the case. To give an estimate of the widths predicted by the model we 
assume that F(e" ~ 7r~z) = 140 MeV. Then a solution of  equation (3.2) is 

O~ = 66 ~ 45', (3.9) 

which will be used in the subsequent calculations. 
From equations (2.22) and (3.9) we get 

mK, --- 1000 MeV (3.10) 

A solution of equation (2.23) which will be used in the calculation is 

Ov = -11 ~ (3.1 I) 
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From equations (3.1), (3.3)-(3.6), and (3.9)-(3.11) we find: 

F(e -+ nn) = 840 MeV 

F(d ~ / ~ K )  = 135 MeV 

F(6 ~ rc~/) = 180 MeV 

F(K '  ~ Kzc) = 580 MeV 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

The values of  F(e -+ mr) and F(d ~ / L K )  are more or less consistent with 
the experimental data, while the width F(6 -~ nt/) is larger than the experi- 
mental width. Probably we should not identify our I =  1 scalar meson 
with the meson 7r~(975). 

The meson-meson scattering lengths can be easily calculated. The direct 
interaction terms of our Lagrangian give the scattering lengths of Cronin 
(1967). In addition there is a contribution from scalar meson exchange. 
The S-wave ~r-~r scattering lengths are given by the expressions 

7 2 . f 2 m ,  a[g~.~ g~.~,.~ 
Cto(nX ) = -~-~f  me -t- ~ ~-~2 + m~, ] + - -  

-~ m~. -- 4m~ 2 ] 

= 0 

1 2 , f 2 m S  [ g ~ r  , g2, ~ 

2 7 f 2 m 3 { .  g a 
32~ l,m. 2 - 4m,~ 2 

(3.16) 

(3.17) 

(3.18) 

We find ao0rn) -  0"16m~ 1, and or The contribution of 
the e and d exchange graphs to nTr scattering lengths is very small. 

The S-wave nK scattering lengths can be similarly calculated. We find 

1 / + m*2 g"~ (g"g~ mK2 - g~rr) 
~112(7rK) = 8rc(m~ + mr)  t f 2  m~ mK 2m2 

+ m,2g~,**(g~,rK m r  2 - g'~'r~) f213(m~ - rnK) 2 + 2(m~, - mn 2) + 3mK2] 2 
2m~, 72[(rn~ - mr) 2 + m~,] 

+2_.~_~ +- m--~)2 ~ m~ ' ] m ~ : )  2 + 2(m~, - m~ 2) + 3mr2] 2 }, + f2[3(rn~ (3.19) 

l+ { f 2 m ,  m r  2 z ,  m~ g ,~(g ,  KK mr  -- g~rr) 
~3/20rK) = 8n(m~ mr) 2 ~ 2m~ 2 

2 g~,,~(g,,Krm~2 --g~'~r)' -- mK) 2 + 2(m 2" -- m~ 2) +3m~:2] 21 
+f213(m" 3-3-g~-- m---~K)2~m---~x,] mn 

(3.20) 
The above expressions give ~a/z(TrK) - 0"19rn~ 1 and o~312(r ~- -0.05mgL 
The main contribution comes from the contact term. 
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Also the S-wave KK scattering lengths can be calculated. We find 

ao(KK) = 0 (3.21) 

- g .~ /0  1 f2  mK2 (gerx mr 2 -- g,~Kr) 2 + (g~Kr mK 2 ' 2 
el(KK) = 16~mr 2 -t rn'~ 2 m" 2 

(g~,K~ mK 2 -- g;,x~)21 
+ m~: ) (3.22) 

from which we get al(KK)~--0.13m~L Again the contribution coming 
from scalar meson exchange is small. The couplings g~.., g,,~, g~rr, g,'KK 
and g~Kr appearing in some of Eqs. (3.16)-(3.22) are obtained from the 
Lagrangian (2.27), and the couplings g'~rK, g'~'KK and g~KK from the 
Lagrangian (2.28). 

4. Meson-Baryon Lagrangians 

We assign the baryons to the representation (3',3) and (3,3*) of 
SU(3)z | SU(3)R as was originally suggested by Gell-Mann (1964) 
because it gives a D-type axial-vector current, while the representation 
(8,1) and (1,8) gives pure F-type currents. The F-type admixture of the 
axial-vector current seems to be only of the order of 30 ~o (Gabbibo, 1963). 
We use the two component Weyl field (Marshak et aL, 1965). Therefore, 
if B, B is the baryon field we write 

. (B.)~" 
B, = ((BL)g,) (4.1) 

where 

BL = �89 + ~5) B ~ (3~*, 3 . )  (4.2) 

B .  = �89 - ~5) B ~ (3L, 3 . * )  (4.3) 

We consider the baryon kinetic energy term 

I-~E = "-�89 # y.~ 7~. O,(Bz)a" - �89 # y+ 7u 0,(B,)#" 

= -�89 Tr (Bru 0, B) (4.4) 

and the following meson-baryon Lagrangians: 

L ~ .  = e,,e eer r,~ Ma'(B.)  : + e,,e ~e~"(B.+)r 7.(M+)e'(BL). e 
= - T r  (/~B) + 3/~o Bo +f[3%/(3)/7o Bo So - %/(3) Tr (/TB) So 

- %/(3)Tr (/~S) Bo + Tr (/~{S, B)+) - %/(3)/~o Tr (SB)] 
+ / f  [-3 %/(3)/~o V5 Bo Po + %/(3) Tr (/7y5 B) Po + %/(3) Tr (BTs P) Bo 

- Tr (/775{P, B}+) + %/(3)/7o 75 Tr (PB)] + ~  [Tr (/~B) Tr (pu) 

- Tr (~{p2.  B)+)] + O ( f : )  (4.5) 
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+ e~w ea*n(2s BL+)~ ~ y, Ma~(Ba)f + e~6 ear Ba+)r ~ y,(M+)a~iBL)f 
= - T r  (/~B2s) + ( (6 )  Bo Bs +f[3%/(2)Bo Bs So - %/(3) Tr (BB2s) ,So 

- V'(2) Tr (aS) B8 - V'(3) Tr (BS28) Bo + Tr (B(S, B28}+)] 
+ if [-3 %/(2) Bo 75 B8 Po + %/(3) Tr ( / ~  B 28) Po 
+ %/(2) Tr (By5 P) Bs + %/(3) Tr (28 By5 P) Bo 

f2  
- Wr (B?5{P, B2s}+)] + -~ [Tr (/3B2s) T r e  e - Tr (B{P z, B2s}+)] 

+ He + O(f  2) (4.6) 

L3 8 e ~ " r B  +~ ~~ M ~:2 B ~ 6 • e ~#r +~ ~ ~' : M  +~ ~ (2  B ~ e M B ~ "  a~,5 k L ,tl; u  # k 8 R,trt ~ a~,5 k R )g  ~'4k )/i' k 8 LJq 

e eaCnrB + 2 a ~"' M ~tB ~ * • e ~ar + 2  ~ *'' : M  +~ ":B a e o~u k L 81g g4  ,8 k R.F~ q 0t76 t R 8]g u 10 k LJJ! 

= - T r  (928 B) + %/(6) 9o B8 +f[3a/(2) Bo Bs So - V(3) Tr (B2s B) So 
- %/(2) Tr (/~S) B8 - %/(3) Tr (B28 S) Bo + Tr (B(S, 2s B)+)] 
+ / f  [-3 %/(2) Bo ?s B~ Po + if(3) Tr (;~75 2s B) 1"o 
+ %/(2) Tr (B2:5 P) B8 + %/(3) Tr (a2~ ~s P) BB - Tr (B~'5{P, Zs B}+)] 

+ [ T r ( ~ B ) T r P  ~ -  Tr(B{P~,2~B}+)I + He + O(ff) 

(4.7) 

/_~, = Tr (Bz + M +) 74 Tr (M + BR) + Tr (BR + M) y, Tr (MBD 
= 3 Bo Bo + %/(3) f [/~o Tr (SB) + Tr (BS) Bo] + i %/(3) f [/~o Ys Tr (SB) 

+ Wr (/~S) Y5 Bo] + O(f 2) (4.8) 

In the expansion of the Lagrangians L~vm, i = 1 ...... 4 we have kept only 
those terms of order O(f  ~) which contribute to 7rN scattering. The 
Lagrangian L ~  is invariant under the group SU(3)L | SU(3)a. The 
L~m alone implies that the SU(3) singlet of the baryon nonet has 
negative mass, which is in absolute value twice as large as the mass of 
the other baryons. A negative mass baryon is interpreted as a baryon with 
positive mass and opposite parity (Freund & Nambu, 1964). This will be 
identified with the I1o*(1405). The Lagrangians L~aB and L ~  break the 
SU(3)r | SU(3)R symmetry and allow the octet of baryons to get their 
physical masses, as we shall see in a moment. Since the mass of the Yo*(1405) 
is quite a bit lower than twice the average mass of the octet, the Lagrangian 
L4a is introduced. If we assign the baryons the canonical weight l, = --{ 
the Lagrangian densities L~ ,  L~B, L~m and L~a transform as scalar densities 
of conformal weight l = -4,  while the L ~  transforms as scalar density of 
weight I = - 5 .  

Consider the Lagrangian 
4 

LMB---~ L~m + ~ C,L~B (4.9) 
i=1  
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The coefficients C, of the above expression are determined by the require- 
ment that the LMn to zero order in f ,  will be the free Lagrangian of a nonet 
of baryons all of which have their physical masses apart from electromagnetic 
mass splitting (which we ignore). The higher order in f terms of L~,B are 
pseudoscalar meson-baryon and scalar meson-baryon interaction terms. 
From (4.9) we get to zero order in f :  

- �89  (BT, ? , B )  - C1 .O~B, - 2BoBo - C2[2Tr (BB28) - a/(6) (/~o B8 

+  sBo)-C3[2Tr( ,hB)-V(6)(&Bs+  sBo)]+ 3C,&Bo (4.10) 

The above expression has off-diagonal terms of the type/loB8 +/~sBo and 
must be diagonalized. Therefore, we assume Bo - B8 mixing with a mixing 
angle OR according to 

A = cos On Bs + sin On Bo 
Y' = -s in  OB B8 + cos On Bo (4.11) 

As we argued before the physical �89 isosinglet I"o*(1405) will be represented 
by the field 75 Y'. From (4.11) and the assumption that the expression 
(4.10) is the free Lagrangian of a nonet of baryons we find 

mr + mr + m~ 
cl 3 

C2 mr -- mr 
2V'3 

C3 = mz -- m~ 
2V'3 

C4 - mr - ma - mz 
3 (4.12) 

As expected the parameters (22 and Ca are of the order of Am. The mixing 
angle On is given by 

2mz - mN - m~ = -0.0226 (4.13) 
tan 2OB = -~r 3rnr + 4(rn N + m Q - 2m~ - 3ma 

We find On = 39', a very small mixing angle. 
From the Lagrangian LMB of equations (4.9) we get, if we use equations 

(4.12), 
L~N~ ~ - f ( s i n O ~ +  c~ - - ~ ] e ~ T N  (4.14) 

L ~ . N ~ = _ r n ~ f ( c o s O ,  sinO~, , ) (4.15) 

which give the coupling constants G~NN and Q,~cN. 
2O 
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We define the coupling constants G,~ and G,,~ by the formulas 

. 3GZ,~[m~ 2 -  4m 2~1/2 
F(e --~ ~z~)= ~ t 4 ) (4.16) 

~ \  (4.17) 

Comparing the above expressions with the widths F(e -+ 7zn) and F(d -+ nn) 
we get 

G~,~ = sin O, + - - - ~ ]  (m.2-mn2)  2 (4.18) 

G 2 ~ = / ~  (cosO~ sinO~]2(m~,-rn~2)2 (4.19) 
3m,, \ ,V/2 ] 

From equations (4.14), (4.15), (4.18) and (4.19) we find the ratios 

IG=~I m u m ,  1.4 (4.20) 
R =  IG=.I m,2--  m~ 2 

R" ]G~,~vNI= mNm~, =0.89 (4.21) 
IG=,==I m~, - m~ 2 

The above ratios are independent of the parameters f and O~. The values 
of R and R' found from the coupling of e and e' to the trace of the energy- 
momentum tensor are (Genz & Steiner, 1971a, b) 

m .  m s 
R = m~ 2 + 2rn~ 2 1.24 (4.22) 

R'  = rn,,mN 0"85 (4.23) 
m~, + 2m~ 2 

The above values of R and R' are very close to the corresponding values of 
these ratios of equations (4.20) and (4.21). 

From equations (4.14) and (4.18) the value of the product I G,~ G~Nsl/4r~ 
can be calculated. We find 

COS 0~] 2 f 2 ( m 2  _ m2) m,v 
[G,~G,NN[_ sin O~ + :4.9 (4.24) 

4re V'2 ] 12rcm, 

The value of the above product found by Engels (1970) is 5-49 ~ 0.32. 
Petersen and Pi~ut (1972) give the values 5.68 • 1.0 if the I = J = 0  7rrc 
phase shift 600 is clown-up or up-up, and 4.06 =~ 0.8 if 600 is down-down 
or up-down. Also Schaile (Ebel et al., 1971) gives the value 5.0 and Strauss 
(Ebel et al., 1971) the value 4.0, Thus expression (4.24) is in reasonable 
agreement with experiment. 
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Also we find 

[G~'~G,'NNt ( sinO,~f2(mZ~'--m~2)mN 
4re = cos O,  7r ] ] - 2 - ~ ,  = 0"34 (4.25) 

This p roduc t  is very sensitive to the value of  the angle 05. F r o m  the coupling 
of  d to the trace of  the ene rgy-momentum tensor we get (Genz & Steiner, 
1971b) 

IG,',~G,,uN] Ftot 
4z~ 6"2m (4.26) 

where / ' to t  is the total  width of  d.  In  our model  we have Fto t = 275 MeV 
and equat ion (4.26) gives 

[G~,~ G,.NN[ = 0"32 (4.27) 
4re 

in reasonable agreement  with expression (4.25). The experimental  estimates 
of  the above p roduc t  are contradic tory (Genz & Steiner, 1971b). 
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